Cortensor
  • Home
  • Abstract
    • Value Proposition
    • Whitepaper
      • Page 1: Introduction and Vision
      • Page 2: Architecture and Technical Overview
      • Page 3: Incentive Structure and Tokenomics
      • Page4: Development Roadmap and Phases
      • Page5: Summary
  • Introduction
    • What is Cortensor?
    • Key Features & Benefits
    • Vision & Mission
  • Getting Started
    • Quick Start Guide
    • System Requirements
    • Installation & Setup
      • Getting Test ETH
      • Setup Own RPC Endpoint
      • Router Node Setup
        • Router API Reference
  • Core Concepts
    • Decentralized AI Inference
      • Community-Powered Network
      • Gamification and Quality Control
      • Incentive Structure
    • Universal AI Accessibility
    • Multi-layer Blockchain Architecture
  • Technical Architecture
    • Design Principles
    • Node Roles
    • Node Lifecycle
      • Ephemeral Node State
    • Node Reputation
    • Network & Flow
    • Type of Services
    • Coordination & Orchestration
      • Multi-Oracle Node Reliability & Leadership Rotation
    • AI Inference
      • Open Source Models
        • Centralized vs Decentralized Models
      • Quantization
      • Performance and Scalability
    • Consensus & Validation
      • Proof of Inference (PoI) & Proof of Useful Work (PoUW
      • aka Mining
      • Proof of Useful Work (PoUW)
      • Proof of Useful Work (PoUW) State Machine
        • Miner & Oracle Nodes in PoUW State Machine
      • Sampling in Large Distributed Systems
      • Parallel Processing
      • Embedding Vector Distance
    • Multi-Layered Blockchain Architecture
    • Modular Architecture and Smart Contract Interactions
      • Session Queue
      • Node Pool
      • Session Payment
    • Mining Overview
    • User Interaction & Node Communication
      • Session, Session Queue, Router, and Miner in Cortensor
    • Data Management
      • IPFS Integration
    • Security & Privacy
    • Dashboard
    • Development Previews
      • Multiple Miners Collaboration with Oracle Node
      • Web3 SDK Client & Session/Session Queue Interaction
    • Technical Threads
      • AI Agents and Cortensor's Decentralized AI Inference
    • Infographic Archive
  • Community & Ecosystem
    • Tokenomics
      • Network Incentive Allocation
      • Token Allocations & Safe Wallet Management
    • Staking Pool Overview
    • Contributing to Cortensor
    • Incentives & Reward System
    • Governance & Compliance
    • Safety Measures and Restricted Addresses
    • Buyback Program
    • Liquidity Additions
    • Partnerships
      • Partnership Offering for Demand-Side Partnerships
    • Community Testing
      • Closed Alpha Testing Phase #1
        • Closed Alpha Testing Phase #1 Contest: Closing & Winners Announcement
      • Closed Alpha Testing Phase #2
      • Closed Alpha Testing Phase #3
      • Discord Roles & Mainnet Privileges
      • DevNet Mapping
      • DevNet Modules & Parameters
    • Jobs
      • Technical Writer
      • Communication & Social Media Manager
      • Web3 Frontend Developer
      • Distributed Systems Engineer
  • Integration Guide
    • Web2
      • REST API
      • WebSocket
      • Client SDK
    • Web3
      • Web3 SDK
  • Use Cases
  • Roadmap
    • Technical Roadmap: Launch to Next 365 Days Breakdown
    • Long-term Vision: Beyond Inference
  • Glossary
  • Legal
    • Terms of Use
    • Privacy Policy
    • Disclaimer
    • Agreement for Sale of Tokens
Powered by GitBook
On this page
  • Cortensor: Collaborative AI Frontier
  • Overview
  • Key Features

Home

Cortensor: Collaborative AI Frontier

Welcome to the official documentation for Cortensor, the pioneering decentralized AI inference and development platform. Here, you will find comprehensive resources to help you understand, set up, and maximize the potential of Cortensor.

Overview

Cortensor aims to democratize AI by leveraging the power of decentralized networks and open-source models. By eliminating the constraints of centralized services, Cortensor provides a scalable, cost-effective solution for AI inference and development.

Key Features

  • Decentralized AI Inference: Harness the collective power of distributed computing for efficient and scalable AI processing.

  • Open-Source Models: Utilize a variety of models for flexible and unrestricted AI applications.

  • Blockchain Integration: Ensure secure, transparent transactions and incentivized collaborations.

  • Scalability and Efficiency: Optimize resource usage and reduce operational costs.


Disclaimer: This page and the associated documents are currently a work in progress. The information provided may not be up to date and is subject to change at any time. Important Notice

This documentation is still under development and is a work in progress. It represents an early-stage effort to compile information based on the features we have developed and are continuing to develop.

Please be aware that the content may contain redundant and duplicate information, and many details are subject to change. Your understanding and patience are appreciated as we continue to improve and update this documentation.

NextAbstract

Last updated 4 months ago

Page cover image